Skip to content
Failed

Console Output

Started by user Peter Roels
Obtained jenkins_tests/clubb_release_diff_test/Jenkinsfile from git https://github.com/larson-group/clubb.git
Running in Durability level: MAX_SURVIVABILITY
[Pipeline] Start of Pipeline
[Pipeline] node
Still waiting to schedule task
Waiting for next available executor
Running on Jenkins in /home/jenkins/workspace/clubb_release_diff_test
[Pipeline] {
[Pipeline] stage
[Pipeline] { (Declarative: Checkout SCM)
[Pipeline] checkout
The recommended git tool is: git
Cloning the remote Git repository
Cloning repository https://github.com/larson-group/clubb.git
 > git init /home/jenkins/workspace/clubb_release_diff_test # timeout=10
Fetching upstream changes from https://github.com/larson-group/clubb.git
 > git --version # timeout=10
 > git --version # 'git version 1.8.3.1'
using GIT_ASKPASS to set credentials THe key used by the system for the tests
 > git fetch --tags --progress https://github.com/larson-group/clubb.git +refs/heads/*:refs/remotes/origin/* # timeout=10
 > git config remote.origin.url https://github.com/larson-group/clubb.git # timeout=10
 > git config --add remote.origin.fetch +refs/heads/*:refs/remotes/origin/* # timeout=10
Avoid second fetch
 > git rev-parse refs/remotes/origin/master^{commit} # timeout=10
Checking out Revision c1e00c325e5d875ee54d6d6c30cdd8785dd5d6cd (refs/remotes/origin/master)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f c1e00c325e5d875ee54d6d6c30cdd8785dd5d6cd # timeout=10
Commit message: "Reducing the number of calls to Cholesky_factor. This is bit-for-bit for all standalone cases and our coarse res version of cam. larson-group/cam#129"
 > git rev-list --no-walk 9c1470d3d5919fbbdcb8d50313ff103166b49bf7 # timeout=10
[Pipeline] }
[Pipeline] // stage
[Pipeline] withEnv
[Pipeline] {
[Pipeline] stage
[Pipeline] { (Checkout Clubb and Clubb_Release)
[Pipeline] sh
+ git clone https://LarsonGroupSysAdmin:repo99sitori@github.com/larson-group/clubb.git
Cloning into 'clubb'...
+ git clone https://LarsonGroupSysAdmin:repo99sitori@github.com/larson-group/clubb_release.git
Cloning into 'clubb_release'...
[Pipeline] }
[Pipeline] // stage
[Pipeline] stage
[Pipeline] { (Diff)
[Pipeline] sh
+ diff --exclude=.git --exclude=version_clubb_core.txt --exclude=version_silhs.txt -r clubb clubb_release
diff '--exclude=.git' '--exclude=version_clubb_core.txt' '--exclude=version_silhs.txt' -r clubb/src/CLUBB_core/setup_clubb_pdf_params.F90 clubb_release/src/CLUBB_core/setup_clubb_pdf_params.F90
371a372,374
> 
>       ice_supersat_frac_1(j,:) = pdf_params(j)%ice_supersat_frac_1
>       ice_supersat_frac_2(j,:) = pdf_params(j)%ice_supersat_frac_2
405,410c408
<       
<       do j = 1, ngrdcol
<         ice_supersat_frac_1(j,:) = pdf_params(j)%ice_supersat_frac_1
<         ice_supersat_frac_2(j,:) = pdf_params(j)%ice_supersat_frac_2
<       end do
<       
---
>         
496c494
<           ! call stat_update_var( ihmp2_zt(i), hydrometp2_zt(:,i), stats_zt )
---
> !         call stat_update_var( ihmp2_zt(i), hydrometp2_zt(:,i), stats_zt )
584c582
<             ! call stat_update_var( iprecip_frac, precip_frac, stats_zt )
---
>   !          call stat_update_var( iprecip_frac, precip_frac, stats_zt )
593c591
<             ! call stat_update_var( iprecip_frac_1, precip_frac_1, stats_zt )
---
>   !          call stat_update_var( iprecip_frac_1, precip_frac_1, stats_zt )
602c600
<             ! call stat_update_var( iprecip_frac_2, precip_frac_2, stats_zt )
---
>   !          call stat_update_var( iprecip_frac_2, precip_frac_2, stats_zt )
611c609
<             ! call stat_update_var( iNcnm, Ncnm, stats_zt )
---
>   !          call stat_update_var( iNcnm, Ncnm, stats_zt )
697,712d694
<       
<       do k = 2, nz, 1
<         do j = 1, ngrdcol
<           call calc_cholesky_corr_mtx_approx &
<                          ( pdf_dim, corr_array_1_n(j,:,:,k), &           ! intent(in)
<                            corr_cholesky_mtx_1(j,:,:,k), corr_array_1_n(j,:,:,k) ) ! intent(out)
<         end do
<       end do
< 
<       do k = 2, nz, 1
<         do j = 1, ngrdcol
<           call calc_cholesky_corr_mtx_approx &
<                          ( pdf_dim, corr_array_2_n(j,:,:,k), &           ! intent(in)
<                            corr_cholesky_mtx_2(j,:,:,k), corr_array_2_n(j,:,:,k) ) ! intent(out)
<         end do
<       end do
715,772c697,710
<       
<       if ( .not. l_interp_prescribed_params .and. l_fix_w_chi_eta_correlations &
<            .and. .not. l_calc_w_corr ) then
<         
<         ! When the flags are set this way, the correlation matrices do not vary with any vertical
<         ! values, and instead are determined entirely by prescribed values. This results in there
<         ! being only two unique correlation matrices, one for when the grid box is in cloud
<         ! and one for when it is not. So instead of setting up correlation matrices for all
<         ! grid boxes then calculating their Cholesky decomps, we can simply set up two correlation
<         ! matrices, one for in cloud and one for out cloud, calculate the corresponding 
<         ! Cholesky decompositions, then use the value of rc at each grid box to determine whether
<         ! we assign the in cloud or out of cloud matrices to that grid box. 
<         call calc_corr_norm_and_cholesky_factor( nz, ngrdcol, pdf_dim, iiPDF_type, &
<                                                  rc_1, rc_2, &
<                                                  corr_array_n_cloud, corr_array_n_below, &
<                                                  corr_array_1_n, corr_array_2_n, &
<                                                  corr_cholesky_mtx_1, corr_cholesky_mtx_2 )
<         
<       else
<         
<         ! The correlation matrices can vary with vertical values. So we need to set the 
<         ! correlation matrices up for each grid box, then find the Cholesky decomp for each
<         ! grid box individually. This is very computationally expensive.
< 
<         call comp_corr_norm( nz, pdf_dim, ngrdcol, wm_zt(:,:), rc_1(:,:), rc_2(:,:), &
<                              cloud_frac_1(:,:), cloud_frac_2(:,:), mixt_frac(:,:), &
<                              precip_frac_1(:,:), precip_frac_2(:,:), &
<                              wpNcnp_zt(:,:), wphydrometp_zt(:,:,:), &
<                              mu_x_1(:,:,:), mu_x_2(:,:,:), &
<                              sigma_x_1(:,:,:), sigma_x_2(:,:,:), &
<                              sigma_x_1_n(:,:,:), sigma_x_2_n(:,:,:), &
<                              corr_array_n_cloud, corr_array_n_below, &
<                              pdf_params, &
<                              iiPDF_type, &
<                              l_calc_w_corr, &
<                              l_fix_w_chi_eta_correlations, &
<                              corr_array_1_n(:,:,:,:), corr_array_2_n(:,:,:,:) )
<                              
<         ! Compute choleksy factorization for the correlation matrix of 1st PDF component
<         do k = 2, nz, 1
<           do j = 1, ngrdcol
<             call Cholesky_factor( pdf_dim, corr_array_1_n(j,:,:,k), & ! In
<                                   corr_array_scaling, corr_cholesky_mtx_1(j,:,:,k), &  ! Out
<                                   l_corr_array_scaling ) ! Out
<           end do
<         end do
<         
<         ! Compute choleksy factorization for the correlation matrix of 2nd PDF component
<         do k = 2, nz, 1
<           do j = 1, ngrdcol
<             call Cholesky_factor( pdf_dim, corr_array_2_n(j,:,:,k), & ! In
<                                   corr_array_scaling, corr_cholesky_mtx_2(j,:,:,k), &  ! Out
<                                   l_corr_array_scaling ) ! Out
<           end do
<         end do
<         
<       end if
<       
---
> 
>       call comp_corr_norm( nz, pdf_dim, ngrdcol, wm_zt(:,:), rc_1(:,:), rc_2(:,:), &
>                            cloud_frac_1(:,:), cloud_frac_2(:,:), mixt_frac(:,:), &
>                            precip_frac_1(:,:), precip_frac_2(:,:), &
>                            wpNcnp_zt(:,:), wphydrometp_zt(:,:,:), &
>                            mu_x_1(:,:,:), mu_x_2(:,:,:), &
>                            sigma_x_1(:,:,:), sigma_x_2(:,:,:), &
>                            sigma_x_1_n(:,:,:), sigma_x_2_n(:,:,:), &
>                            corr_array_n_cloud, corr_array_n_below, &
>                            pdf_params, &
>                            iiPDF_type, &
>                            l_calc_w_corr, &
>                            l_fix_w_chi_eta_correlations, &
>                            corr_array_1_n(:,:,:,:), corr_array_2_n(:,:,:,:) )
777,781c715,719
<                                    sigma_x_1_n(:,:,:), sigma_x_2_n(:,:,:), &
<                                    sigma2_on_mu2_ip_1(:,:,:), sigma2_on_mu2_ip_2(:,:,:), &
<                                    corr_array_1_n(:,:,:,:), &
<                                    corr_array_2_n(:,:,:,:), &
<                                    corr_array_1(:,:,:,:), corr_array_2(:,:,:,:) )
---
>                                 sigma_x_1_n(:,:,:), sigma_x_2_n(:,:,:), &
>                                 sigma2_on_mu2_ip_1(:,:,:), sigma2_on_mu2_ip_2(:,:,:), &
>                                 corr_array_1_n(:,:,:,:), &
>                                 corr_array_2_n(:,:,:,:), &
>                                 corr_array_1(:,:,:,:), corr_array_2(:,:,:,:) )
815a754,793
>     if ( l_diagnose_correlations ) then
>          
>       do k = 2, nz, 1
>         do j = 1, ngrdcol
>           call calc_cholesky_corr_mtx_approx &
>                          ( pdf_dim, corr_array_1_n(j,:,:,k), &           ! intent(in)
>                            corr_cholesky_mtx_1(j,:,:,k), corr_array_1_n(j,:,:,k) ) ! intent(out)
>         end do
>       end do
> 
>       do k = 2, nz, 1
>         do j = 1, ngrdcol
>           call calc_cholesky_corr_mtx_approx &
>                          ( pdf_dim, corr_array_2_n(j,:,:,k), &           ! intent(in)
>                            corr_cholesky_mtx_2(j,:,:,k), corr_array_2_n(j,:,:,k) ) ! intent(out)
>         end do
>       end do
> 
>     else
>       
>       ! Compute choleksy factorization for the correlation matrix (out of
>       ! cloud)
>       do k = 2, nz, 1
>         do j = 1, ngrdcol
>           call Cholesky_factor( pdf_dim, corr_array_1_n(j,:,:,k), & ! In
>                                 corr_array_scaling, corr_cholesky_mtx_1(j,:,:,k), &  ! Out
>                                 l_corr_array_scaling ) ! Out
>         end do
>       end do
>       
>       do k = 2, nz, 1
>         do j = 1, ngrdcol
>           call Cholesky_factor( pdf_dim, corr_array_2_n(j,:,:,k), & ! In
>                                 corr_array_scaling, corr_cholesky_mtx_2(j,:,:,k), &  ! Out
>                                 l_corr_array_scaling ) ! Out
>         end do
>       end do
>         
>     end if
> 
1145,1189d1122
<   
<   !=============================================================================
<   subroutine calc_corr_norm_and_cholesky_factor( nz, ngrdcol, pdf_dim, iiPDF_type, &
<                                                  rc_1, rc_2, &
<                                                  corr_array_n_cloud, corr_array_n_below, &
<                                                  corr_array_1_n, corr_array_2_n, &
<                                                  corr_cholesky_mtx_1, corr_cholesky_mtx_2 )
< 
<     ! Description: This subroutine computes the correlation arrays and correlation
<     !   Cholesky matrices of PDF vars for both components. Here, we assume that
<     !   there are only two unique correlation arrays, which allows us to compute 
<     !   these two unique arrays and their corresponding Cholesky decompositions,
<     !   then use rc to determine which one to assign to each grid column and 
<     !   vertical level. If the correlation arrays vary based on vertically varying
<     !   values, then this subroutine is not appropriate.
<     !   
<     ! References:
<     !   https://github.com/larson-group/cam/issues/129#issuecomment-816205563
<     !-----------------------------------------------------------------------
<     
<     use constants_clubb, only:  &
<         rc_tol,      &
<         zero
< 
<     use clubb_precision, only: &
<         core_rknd  ! Variable(s)
< 
<     use array_index, only: &
<         iiPDF_chi, & ! Variable(s)
<         iiPDF_eta, &
<         iiPDF_w,   &
<         iiPDF_Ncn
<         
<     use model_flags, only: &
<         iiPDF_ADG1,       & ! Variable(s)
<         iiPDF_ADG2,       &
<         iiPDF_new_hybrid
< 
<     use pdf_parameter_module, only: &
<         pdf_parameter  ! Variable(s)    
<         
<     use matrix_operations, only: &
<         Cholesky_factor ! Procedure(s)
< 
<     implicit none
1191,1324d1123
<     ! Input Variables
<     integer, intent(in) :: &
<       nz,      & ! Number of vertical levels
<       pdf_dim, & ! Number of variables in the corr/mean/stdev arrays
<       ngrdcol    ! Number of grid columns
< 
<     real( kind = core_rknd ), dimension(ngrdcol,nz), intent(in) :: &
<       rc_1,   & ! Mean of r_c (1st PDF component)                 [kg/kg]
<       rc_2      ! Mean of r_c (2nd PDF component)                 [kg/kg]
< 
<     real( kind = core_rknd ), dimension(pdf_dim,pdf_dim), intent(in) :: &
<       corr_array_n_cloud, & ! Prescribed correlation array in cloud        [-]
<       corr_array_n_below    ! Prescribed correlation array below cloud     [-]
< 
<     integer, intent(in) :: &
<       iiPDF_type    ! Selected option for the two-component normal (double
<                     ! Gaussian) PDF type to use for the w, rt, and theta-l (or
<                     ! w, chi, and eta) portion of CLUBB's multivariate,
<                     ! two-component PDF.
<                     
<     ! Output Variables
<     real( kind = core_rknd ), dimension(ngrdcol,pdf_dim,pdf_dim,nz), intent(out) :: &
<       corr_array_1_n,       & ! Corr. array (normal space) of PDF vars. (comp. 1)  [-]
<       corr_array_2_n,       & ! Corr. array (normal space) of PDF vars. (comp. 2)  [-]
<       corr_cholesky_mtx_1,  & ! Transposed corr. cholesky matrix, 1st comp.        [-]
<       corr_cholesky_mtx_2     ! Transposed corr. cholesky matrix, 2nd comp.        [-]
< 
<     ! Local Variables
<     real( kind = core_rknd ), dimension(pdf_dim,pdf_dim) :: &
<       corr_array_cloud,         & ! General in cloud corr. matrix
<       corr_array_below,         & ! General out of cloud corr. matrix
<       corr_cholesky_mtx_cloud,  & ! General in cloud Cholesky matrix
<       corr_cholesky_mtx_below     ! General out of cloud Cholesky matrix
<       
<     logical :: &
<       l_corr_array_scaling  ! Dummy variable that we need for calling Cholesky_factor
<       
<     real( kind = core_rknd ), dimension(pdf_dim) :: &
<       corr_array_scaling    ! Dummy variable that we need for calling Cholesky_factor
< 
<     integer :: jvar, j, k ! Indices
<     
<     logical, parameter :: &
<       l_follow_ADG1_PDF_standards = .true.
<                                     
<     !-------------------- Begin Code --------------------
<     
<     ! Initialize correlation arrays with prescribed values
<     corr_array_cloud(:,:) = corr_array_n_cloud(:,:)
<     corr_array_below(:,:) = corr_array_n_below(:,:)
<     
<     ! The ADG1 PDF fixes the correlation of w and rt and the correlation of
<     ! w and theta_l to be 0, which means the correlation of w and chi and the
<     ! correlation of w and eta must also be 0.
<     if ( ( iiPDF_type == iiPDF_ADG1 .or. iiPDF_type == iiPDF_ADG2 &
<             .or. iiPDF_type == iiPDF_new_hybrid ) &
<           .and. l_follow_ADG1_PDF_standards ) then
<           
<       corr_array_cloud(iiPDF_w,iiPDF_chi) = zero
<       corr_array_below(iiPDF_w,iiPDF_chi) = zero
<       
<       corr_array_cloud(iiPDF_w,iiPDF_eta) = zero
<       corr_array_below(iiPDF_w,iiPDF_eta) = zero
<       
<     end if
<     
<     ! Ncn is an inherently in-cloud property, so replace out of cloud correlation values
<     ! with in cloud ones.
<     corr_array_below(iiPDF_Ncn,iiPDF_chi) = corr_array_cloud(iiPDF_Ncn,iiPDF_chi)
<     corr_array_below(iiPDF_Ncn,iiPDF_eta) = corr_array_cloud(iiPDF_Ncn,iiPDF_eta)
<     
<     
<     ! Estimates the correlation of the natural logarithm of a
<     ! hydrometeor species and eta using the correlation of chi and eta and the
<     ! correlation of chi and the natural logarithm of the hydrometeor.  This
<     ! facilitates the Cholesky decomposability of the correlation array that will
<     ! inevitably be decomposed for SILHS purposes. Without this estimation, we
<     ! have found that the resulting correlation matrix cannot be decomposed.
<     do jvar = iiPDF_Ncn+1, pdf_dim
<       
<       corr_array_cloud(jvar,iiPDF_eta) = corr_array_cloud(iiPDF_eta,iiPDF_chi) &
<                                          * corr_array_cloud(jvar,iiPDF_chi)
<       
<       corr_array_below(jvar,iiPDF_eta) = corr_array_below(iiPDF_eta,iiPDF_chi) &
<                                          * corr_array_below(jvar,iiPDF_chi)
<       
<     end do
<     
<     ! Calc in cloud Cholesky 
<     call Cholesky_factor( pdf_dim, corr_array_cloud(:,:), & ! In
<                           corr_array_scaling, corr_cholesky_mtx_cloud(:,:), &  ! Out
<                           l_corr_array_scaling ) ! Out
<                 
<     ! Calc out of cloud Cholesky           
<     call Cholesky_factor( pdf_dim, corr_array_below(:,:), & ! In
<                           corr_array_scaling, corr_cholesky_mtx_below(:,:), &  ! Out
<                           l_corr_array_scaling ) ! Out
<                           
<     ! Use rc_1 to determine which correlation and Cholesky matrices to assign to 1st PDF 
<     do k = 1, nz
<       do j = 1, ngrdcol
<         
<         if ( rc_1(j,k) > rc_tol ) then
<           ! Assign in cloud matrices to 1st PDF component
<           corr_array_1_n(j,:,:,k)      = corr_array_cloud
<           corr_cholesky_mtx_1(j,:,:,k) = corr_cholesky_mtx_cloud
<         else
<           ! Assign out of cloud matrices to 1st PDF component
<           corr_array_1_n(j,:,:,k)      = corr_array_below
<           corr_cholesky_mtx_1(j,:,:,k) = corr_cholesky_mtx_below
<         end if
<         
<       end do
<     end do
<         
<     ! Use rc_1 to determine which correlation and Cholesky matrices to assign to 2nd PDF 
<     do k = 1, nz
<       do j = 1, ngrdcol
<         
<         if ( rc_2(j,k) > rc_tol ) then
<           ! Assign in cloud matrices to 2nd PDF component
<           corr_array_2_n(j,:,:,k)      = corr_array_cloud
<           corr_cholesky_mtx_2(j,:,:,k) = corr_cholesky_mtx_cloud
<         else
<           ! Assign out of cloud matrices to 2nd PDF component
<           corr_array_2_n(j,:,:,k)      = corr_array_below
<           corr_cholesky_mtx_2(j,:,:,k) = corr_cholesky_mtx_below
<         end if
<         
<       end do
<     end do
<   
<   end subroutine calc_corr_norm_and_cholesky_factor
<   
[Pipeline] }
[Pipeline] // stage
[Pipeline] stage
[Pipeline] { (Declarative: Post Actions)
[Pipeline] cleanWs
[WS-CLEANUP] Deleting project workspace...
[WS-CLEANUP] Deferred wipeout is used...
[WS-CLEANUP] done
[Pipeline] emailext
Sending email to: messnermet@uwm.edu
[Pipeline] }
[Pipeline] // stage
[Pipeline] }
[Pipeline] // withEnv
[Pipeline] }
[Pipeline] // node
[Pipeline] End of Pipeline
ERROR: script returned exit code 1
Finished: FAILURE